Name Class Date	Name	Class	Date
-----------------	------	-------	------

8.2 Photosynthesis: An Overview

Lesson Objectives

- Explain the role of light and pigments in photosynthesis.
- Explain the role of electron carrier molecules in photosynthesis.
- State the overall equation for photosynthesis.

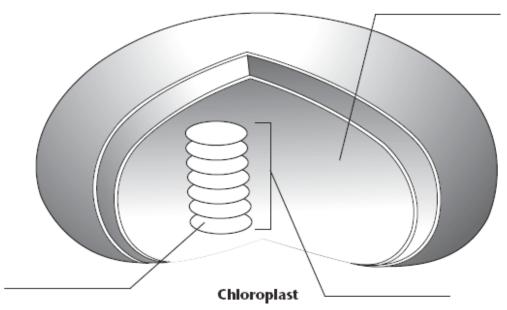
Lesson Summary

Chlorophyll and Chloroplasts In eukaryotes, photosynthesis occurs in organelles called chloroplasts. Chloroplasts house light-absorbing chemicals.

- Light is a form of energy. Sunlight is a mixture of all the different colors of visible light.
- Light-absorbing molecules called **pigments** capture the sun's energy.
- ► Chlorophyll is the principal pigment in photosynthetic organisms. Chlorophyll absorbs blue-violet and red light but reflects green light.
- ► Chloroplasts have a complex internal structure that includes:
 - **thylakoids**: saclike photosynthetic membranes that contain chlorophyll and other pigments and are arranged in stacks called grana.
 - **stroma:** the fluid portion outside of the thylakoids.

High-Energy Electrons The energy in light raises some of the electrons in chlorophyll to higher energy levels. These high-energy electrons are used in photosynthesis.

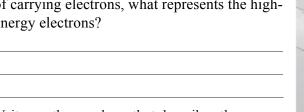
- ► Electron carriers are used to transport the electrons from chlorophyll to other molecules during photosynthesis.
- ▶ NADP⁺ is a compound that can accept and hold 2 high-energy electrons and 1 hydrogen ion. This process converts NADP⁺ into NADPH.

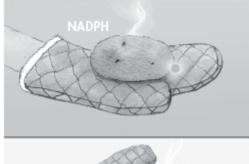

An Overview of Photosynthesis Usually summarized by a simple chemical reaction, photosynthesis is a complex process that involves two interdependent sets of reactions.

- The **light-dependent reactions** require light, light-absorbing pigments, and water to form NADPH, ATP, and oxygen.
- The **light-independent reactions** do not use light energy. They use carbon dioxide from the atmosphere, NADPH, and ATP to make energy-rich carbon compounds.

Chlorophyll and Chloroplasts

For Questions 1–6, o	complete each statement by writing the	correct word or words.
1. The	of light determines its color.	
2. Chemicals that ab	sorb light are called	
3. Chlorophyll make	s plants look green because it	green light.
4. Chloroplasts cont	ain an abundance of saclike photosyntheti	c membranes called


- **5.** The is the fluid portion of the chloroplast located outside the thylakoids.
- **6.** The visible light absorbed by chlorophyll ______ the energy level of the chlorophyll's electrons.
- 7. THINK VISUALLY Label the internal parts of the chloroplast below.


High-Energy Electrons

For Questions 8–9, refer to the Visual Analogy comparing electron carriers to oven mitts.

8. VISUAL ANALOG In the visual analogy of carrying electrons, what represents the highenergy electrons?

9. Write another analogy that describes the process of electron carriers.

10. Where do the high-energy electrons carried by NADPH come from?

Name	Class	Date

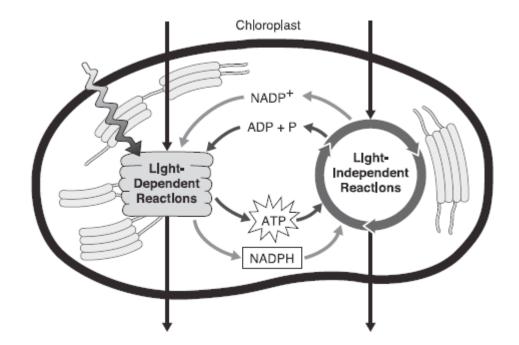
An Overview of Photosynthesis

For Questions 11–13, write the letter of the correct answer on the line at the left.

- 11. What are the reactants of the photosynthesis reaction?
 - A. chlorophyll and light

- C. carbohydrates and oxygen
- **B.** carbon dioxide and water
- **D.** high-energy electrons and air
- **12.** What are the products of the light-dependent reactions?
 - A. chloroplasts and light

C. oxygen and ATP


B. proteins and lipids

- **D.** water and sugars
- **13.** Where do the light-independent reactions occur?
 - A. stroma

C. chlorophyll

B. thylakoids

- **D.** mitochondria
- **14.** Complete the illustration by writing the reactants and products of the light-dependent and light-independent reactions. Also, fill in the energy source that excites the electrons.

Apply the Big idea

15.	Solar power uses cells or panels to absorb the sun's energy. That energy is then used to create electricity. How does this compare to the light dependent reactions of photosynthesis?