Chapter 1

Scientific Process and Themes of Biology

What is Science?

- Scientific knowledge is acquired using a rigorous process
- Science is an organized way of gathering and analyzing evidence about the natural world
- Don't be fooled by pseudoscience (false science)!

Scientific Methodology

- Collecting observations
- Asking questions
- Inferring and Forming a Hypothesis
- Designing a Controlled Experiment
- Collecting and Analyzing Data
- Drawing Conclusions

Observations

- Observation-the act of noticing and describing events or processes in a careful, orderly way
- Document your observations, and use your senses to collect them

Asking Questions

- Ask questions based on your observations
- What was causing your observation?

Inferring and Forming a Hypothesis

- Hypothesis-a scientific explanation for a set of observations that can be tested in ways that support or reject it
- Inference-a logical interpretation based on what scientists already know

Designing a Controlled Experiment

- Controlled Experiment-an experiment in which only one variable is changed, with all other variables remaining constant
- Must include key design aspects to be considered a valid experimental design

- Independent Variable-the variable that is deliberately changed
- Dependent Variable-variable that is observed and that changes in response to the independent variable

Control vs. Experimental Groups

- Control Group-exposed to the same conditions as the experimental group except for one independent variable
- Why is the control group essential?

Collecting and Analyzing Data

- <u>Data</u>-information collected from experiments
- Quantitative data are numbers collected by counting or measuring
- Qualitative data are descriptive and involve characteristics that cannot be counted

Sources of Error

- Choosing the correct measurement tools is essential
- Eliminating possible sources of error is important in the design planning

Drawing Conclusions

- Data from experiments used to support, reject, or revise the hypothesis being tested
- Not whether it is right or wrong!

Communicating Results

- Peer Review happens when scientists share findings by publishing results, which are then reviewed by other experts
- Allows researchers to share ideas and to test and evaluate each other's work

Scientific Theory

- Scientific Theory-a well-tested explanation that unifies a broad range of observations and hypotheses and that enables scientists to make accurate predictions about new situations
- How is this different from the use of the word <u>theory</u> outside of the scientific community?

Characteristics of Life

- Cellular Organization
- Reproduction
- Metabolism
- Homeostasis
- Heredity
- Responsiveness
- Growth and Development
- Evolution

Cellular Organization

Can be unicellular or multicellular.

Reproduction

- Living organisms must be able to reproduce.
- Can either be sexual reproduction (cells from two parents unite to form the first cell of a new organism) or asexual reproduction.
- Asexual reproduction is when a single organism produces offspring identical to itself.

Metabolism

- Metabolism is the combination of chemical reactions through which an organism builds or breaks down materials.
- Digestion, Cellular Respiration, Photosynthesis ect.

Homeostasis

- Keeping your internal cellular environment stable even while external conditions are changing is called <u>homeostasis</u>.
- Osmosis, Diffusion, Active Transport, Passive Transport

Heredity

- All life is linked by a common genetic code.
- The genetic code is written in a molecule called DNA.
- ◆ <u>DNA</u> (Deoxyribonucleic acid)

Responsiveness

- All life detect and respond to stimuli from the surrounding environment.
- A <u>stimulus</u> is a signal to which an organism responds.

Growth and Development

- All life grows and develops during the course of a life time.
- Growth is becoming larger, development is becoming more complex.

Evolution

- Living things as a group, evolve over time.
- Evolution does not mean that all species develop into another species.
- Evolution simply means the change in allele (form of a gene) frequency changes over time within a species.