DNA and Replication

History of DNA

History of DNA

Early scientists
 thought protein
 was cell's
 hereditary
 material because
 it was more
 complex than DNA

Proteins had 20 different amino acids in long polypeptide chains

Twenty standard Amino Acids

- 1. Found in nucleus
- 2. No other uses known.

The Discovery of the Structure of DNA

What is a Virus?

- A virus is nonliving
- Composed of DNA (Sometimes RNA)
- Have a protective protein coat

Transformation

1928--Fred Griffith worked with 2 strains of Pneumonia causing bacteria

- Smooth strain (Virulent 5)
 slime capsule (not seen by
 immune system and kills mice)
 and
- Rough strain (NonvirulentR) no capsule (easily killed)
- He found that R strain could become VIRULENT when it took in DNA from heat-killed S strain

Pneumoccocus bacteria

Study suggested that DNA was probably the genetic material

Fred Griffith Bacterial Transformation

This animation (Audio) describes Griffith experiment.

Mouse dies

(a) Living S (smooth) bacteria

Mouse remains healthy

(b) Living R (rough) bacteria

Mouse remains healthy

(c) Heat-killed S bacteria

(d) Heat-killed S bacteria mixed with living R bacteria

(e) Living S bacteria in blood from dead mouse

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

Griffith Experiment

- Repeated Griffith's experiment adding enzymes to destroy
 - 1. lipids,
 - 2. carbohydrates
 - 3. proteins
 - 4. RNA

still occurred only

NA was left

Hershey & Chase

Used *viruses* to demonstrate that the virus injects DNA and that's what takes over the cell

This animation (Audio) describes the

Hershey-Chase experiments.

(a) T2 and related phages use their tail pieces to attach to the host cell and inject their genetic material (TEM).

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Bacteriophage— *virus* that specializes in attacking *bacteria*.

•tagged DNA of the virus with radioactive phosphorus P³²

•What ever was injected into the bacteria to take over the cell was the carrier of genetic information.

History of DNA

· Chromosomes: made of DNA and protein

Experiments on bacteriophage viruses by Hershey & Chase proved that DNA was the cell's genetic material

Radioactive ³²P was injected into bacteria!

- Erwin Chargraff showed the amounts of the four bases on DNA (A,T,C,G)
- · In a body or somatic cell:

$$A = 30.3\%$$

$$T = 30.3\%$$

$$G = 19.5\%$$

$$C = 19.9\%$$

Chargaff's Rule

- · Adenine must pair with Thymine
- · Guanine must pair with Cytosine
- Bases form weak hydrogen bonds

DNA Structure

Rosalind Franklin took
 diffraction x-ray
 photographs of DNA
 crystals

These animations describe the structure of DNA:

DNA structure 1.

DNA structure 2.

Rosalind Franklin and Watson & Crick

DNA Structure

DNA Deoxyribonucleic Acid

 Two strands coiled = <u>double helix</u>

 Sides = pentose sugar <u>Deoxyribose</u> bonded to <u>phosphate</u> (PO₄)

Rungs (center) =

<u>nitrogen</u> <u>bases</u>

bonded together by
weak <u>hydrogen</u> bonds

DNA: Deoxyribonucleic acid

 Made up of subunits called nucleotides

Nucleotide made of:

- 1. Phosphate group
- 2. 5-carbon sugar
- 3. Nitrogenous base

This animation (Audio - Important) describes

DNA subunits.

DNA Nucleotide

Pentose Sugar

· Carbons are numbered clockwise 1' to 5'

Antiparallel Strands

 One strand of DNA goes from 5' to 3' (sugars)

The other strand is opposite in direction going 3' to 5' (sugars)

· Double ring PURINES

A or G

Base-Pairings

 Purines only pair with Pyrimidines

It's easy to see why a single ring like cytosine

Pairs with a double ring molecule like guanine and not another single ring like thymine.

(c) Space-filling model

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

Question:

· If there is 30%

Adenine, how much

Cytosine is present?

Answer:

- · There would be 20% Cytosine
- · Adenine (30%) = Thymine (30%)
- Guanine (20%) = Cytosine (20%)
- · Therefore, 60% A-T + 40% C-G

DNA Replication

Replication Facts

- DNA has to be copied before a cell divides
- DNA is copied during the S or synthesis phase of interphase
- New cells will need identical DNA strands

DNA Replication

 Enzyme Helicase unwinds and separates the 2 DNA strands by breaking the weak hydrogen bonds

DNA polymerase can then add the new nucleotides

These animations (Audio -Important) describe DNA replication:

<u>DNA replication1,</u> DNA replication 2.

DNA Replication

(a) The parent molecule has two complementary strands of DNA. Each base is paired by hydrogen bonding with its specific partner, A with T and G with C.

DNA Replication

(a) The parent molecule has two complementary strands of DNA. Each base is paired by hydrogen bonding with its specific partner, A with T and G with C.

(b) The first step in replication is separation of the two DNA strands.

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

(a) The parent molecule has two complementary strands of DNA. Each base is paired by hydrogen bonding with its specific partner, A with T and G with C.

(b) The first step in replication is separation of the two DNA strands.

(c)Each parental strand now serves as a template that determines the order of nucleotides along a new complementary strand.

DNA Replication

(a) The parent molecule has two complementary strands of DNA. Each base is paired by hydrogen bonding with its specific partner, A with T and G with C.

(b) The first step in replication is separation of the two DNA strands.

(c) Each parental strand now serves as a template that determines the order of nucleotides along a new complementary strand.

(d) The nucleotides are connected to form the sugar-phosphate backbones of the new strands. Each "daughter" DNA molecule consists of one parental strand and one new strand.

Proofreading New DNA

- DNA polymerase initially makes about 1 in 10,000 base pairing errors
- Enzymes proofread and correct these mistakes
- The new error rate
 for DNA that has
 been proofread is
 1 in 1 billion base
 pairing errors

DNA Damage & Repair

- Chemicals & ultraviolet radiation damage the DNA in our body cells
- Cells must continuously repair DAMAGED DNA

- Excision repair occurs when any of over 50 repair enzymes remove damaged parts of DNA
 - DNA polymerase and DNA ligase replace and bond the new nucleotides together

 What would be the complementary DNA strand for the following DNA sequence?

DNA 5'-CGTATG-3'

Answer:

DNA 5'-GCGTATG-3'

DNA 3'-CGCATAC-5'

In Closing

- DNA is responsible for all the different forms of life on the planet today
- DNA is responsible for carrying genetic information since the beginning of life on the planet

